Astrochemistry: An Emerging Science

Our understanding of the universe relies on many scientific disciplines to explain its structure and evolutionary mechanisms. Over the last few decades, the emerging science of ‘astrochemistry’ has begun to gain momentum in the field of astronomy. This new science aims to detect and identify molecular compounds outside our planet[1]. In the last few years, this research area has expanded to tackle some tough questions such as explaining the formation of solar systems and even the origin of life in the universe.

Astrochemistry utilises a range of advanced telescopes and detection techniques and has led to a number of unique discoveries. Since the first detection of water in interstellar space, many molecules have been discovered which support the conclusion that hydrogen and carbon monoxide are the most abundant molecules in the universe[2]. Astrochemistry has also shown that the presence of dust clouds may enable new chemical reactions in space to take place. It is hoped that this will lead to the discovery of nanoparticles that are able to catalyse oxidizing reactions of organic compounds to produce important molecules such as amino acids[3].

The recent discovery of complex chemical systems in space has been revolutionary for astrochemists. Many of these chemical systems are made of carbon-based structures such as polycyclic aromatic hydrocarbons (PAHs), polyines (carbon chains) and fullerenes. Since fullerenes were discovered by Kroto and colleagues[4], there have been several publications trying to find ways to detect these compounds in space. Fullerenes demonstrate the complexity of chemical systems in space and were finally identified by scientists from the University of Western Ontario[5,6]. A large network of chemical reactions was also found, allowing connections between different molecules important for the origin of life. The study of these initial molecules (or ‘building blocks’) for creating life could be based on organic and inorganic chemical structures. By harnessing astrochemical techniques Leroy Cronin, a Professor of Chemistry at the University of Glasgow, is starting to give the first hints to explain how matter may evolve and to describe these important first steps of live matter[7]. A combination of organic molecules, which are appearing in the interstellar space, and inorganic structures found on the surface of planets, could provide the right conditions for life. It is hoped that the emerging field of astrochemistry can work together with other sciences such as fundamental chemistry and astrobiology to detect the first evidence of life in other planets or galaxies.

Tell your friends!Share on Facebook4Tweet about this on Twitter2Share on Google+0Share on LinkedIn0


// Andreu Ruiz de la Oliva is a PhD student in inorganic chemistry at the University of Glasgow.

Creative Commons License Astrochemistry: An Emerging Science by Andreu Ruiz de la Oliva is licensed under a Creative Commons Attribution 3.0 Unported License.


Other Articles

Nuclear Power: the How, the Pros and the Cons

We are entering into a nuclear renaissance in the West with new nuclear reactors being constructed here and many other places in Europe and America. As such, the debate on nuclear power is going to become a hot topic and a more scientific understanding is essential. This article will provide a series of arguments in … More

Smartphones keeping us awake

Feeling tired? Your smartphone might be to blame. Smartphones have become increasingly popular in recent years and almost two thirds of university students now own a smartphone [1]. However, owning a smartphone may come at a cost for this already sleep deprived population [2]. Various studies have linked the use of computers, television, gaming consoles … More

Green Chemistry: An Elegant Solution to an Avoidable Problem

Let’s save the environment. Pick up that litter; utilise public transport and help reduce the emissions of greenhouse gases; use energy-saving light bulbs; recycle! The above message, whilst an open invitation to everyone (and a very welcome one too), is particularly aimed at those interested or involved in synthetic organic chemistry, whether in an academic … More

Could your smartphone diagnose cancer?

In the developed world, cancer is the biggest killer of our age. Following many years of research and clinical experience, the current view is that early detection is the best possible means to tackle this formidable disease. If diagnosed and treated in the early stages, over 90% of patients survive beyond 10 years – this … More


Leave a Reply

Your email address will not be published. Fields marked with an * are required. By commenting you consent to us placing cookies on your computer.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>